The Distribution Grid of the Future

S&C Electric Company
Gary Wetzel

Recognizing Future Power Needs

- In 2010, the consumer electronics sector represents the largest single usage category for domestic electricity
- By 2020, entertainment, computers and gadgets will account for 45% of electricity used in the home and need the equivalent of 14 average-sized power stations to power them

The average US household owns 26 consumer electronic products

Further increases in dependency on electronic devices drive demand for near-perfect power quality and uninterrupted power availability

Is a Smart Grid a Green Grid?

- Initial estimated annual energy savings are
 37 – 194 billion kWh
 - equivalent to reducing
 24 126 million metric
 tons of CO2
 - equivalent toremoving4 to 20 million cars offthe road

Vision for the Smart Grid

- Performs real-time simulation and contingency analysis
- Automatically adjusts to maximize efficiency and reliability
 - phase balancing
 - loss minimization
 - peak management
 - self-healing
- Interaction among distribution devices, meters, home area networks, and substations
- Readily accommodates distribution generation (DG) and plugin hybrid electric vehicles (PHEV)
- Supports islanding and re-established interconnection
- Reports diagnostics and provides statistics

Distribution Smart Grid Technologies

- Distribution Grid Management
 - distribution automation
 - advanced metering infrastructure
- Distributed Resources
 - energy storage
 - distributed generation
 - electric vehicles
- Efficiency Improvements
 - Volt/VAR Management
 - condition monitoring
 - phase balancing
 - dynamic operating schemes
 - peak reduction/loss management

Technology Characteristics

- Capable of being updated dynamically
- Supports present and future protocols, DNP compatible
- Uses the most secure technologies
- Deployable in stages, scaleable
- Utilizes integrated communications
 - adequate bandwidth for AMI, DA, DG, PHEV
 - capable of prioritizing traffic minimal latency
 - avoids interference and is redundant
 - supports peer-to-peer and peer-to-master communications

Energy Storage

- Energy Storage Benefits
 - cost deferral of new substations
 - improved service reliability
 - less stress on aging infrastructur
 - integration of renewable energy
 - frequency regulation
 - peak shaving
 - dynamic islanding with distribution automation integration
 - facilitating more dispatchable wind generation

Dynamic Islanding from Storage and DA

- Load information is captured by Intelligent devices
- Dynamic islanding activated upon loss of power
- The maximum number of customers are restored serviced by the battery based upon
 - last load information
 - energy in the battery
- The island can be minimized as the battery depletes
- Customer load served until battery is exhausted or power is restored

Reclosing vs. PulseClosing

- Test by closing causes another fault
- Significant system stress
- Through-fault on transformers
- Voltage sags
- Damages

PulseClosing

- Test by PulseClosing
- <2% of let-through energy</p>
- No stress on system
- No transformer throughfault
- No voltage sags
- Will not damage cable

Impact for Utilities

- Think through the macro smart grid roadmap
- Work with others for technology assessments
- Gain experience with large-scale integrated deployments

Validate business case assumptions

Conclusion

- Smart Grid is critical to maintaining reliability, especially in light of new challenges
- The industry is on the cusp of a wave of change presenting a growing opportunity for innovation, collaboration, and, ultimately, success
- Microgrids are part of the solution
 - Military
 - Industrial
 - Campus
 - Remote access locations
- Microgrid challenges
 - Similar to Smart Grid
 - Unique to Microgrids

Smart Grid-Microgrid Evolution

